19.3: Electrical Potential Due to a Point Charge (2024)

  1. Last updated
  2. Save as PDF
  • Page ID
    2659
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vectorC}[1]{\textbf{#1}}\)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}}\)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}\)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    Learning Objectives

    By the end of this section, you will be able to:

    • Explain point charges and express the equation for electric potential of a point charge.
    • Distinguish between electric potential and electric field.
    • Determine the electric potential of a point charge given charge and distance.

    Point charges, such as electrons, are among the fundamental building blocks of matter. Furthermore, spherical charge distributions (like on a metal sphere) create external electric fields exactly like a point charge. The electric potential due to a point charge is, thus, a case we need to consider. Using calculus to find the work needed to move a test charge \(q\) from a large distance away to a distance of \(r\) from a point charge \(Q\), and noting the connection between work and potential \((W=-q\Delta V)\), we can define the electric potential \(V\) of a point charge:

    definition: ELECTRIC POTENTIAL \(V\) OF A POINT CHARGE

    The electric potential \(V\) of a point charge is given by

    \[V=\dfrac{kQ}{r}\: (\mathrm{Point\: Charge}). \label{eq1}\]

    where \(k\) is a constant equal to \(9.0 \times 10^{9}\, \mathrm{N}\cdot \mathrm{m^{2}/C^{2}}.\)

    The potential at infinity is chosen to be zero. Thus \(V\) for a point charge decreases with distance, whereas \(\mathbf{E}\) for a point charge decreases with distance squared:

    \[E=\dfrac{F}{q}=\dfrac{kQ}{r^{2}}.\]

    Recall that the electric potential \(V\) is a scalar and has no direction, whereas the electric field \(\mathbf{E}\) is a vector. To find the voltage due to a combination of point charges, you add the individual voltages as numbers. To find the total electric field, you must add the individual fields as vectors, taking magnitude and direction into account. This is consistent with the fact that \(V\) is closely associated with energy, a scalar, whereas \(\mathbf{E}\) is closely associated with force, a vector.

    Example \(\PageIndex{1}\): What Voltage Is Produced by a Small Charge on a Metal Sphere?

    Charges in static electricity are typically in the nanocoulomb \((\mathrm{nC})\) to microcoulomb \((\mu \mathrm{C})\) range. What is the voltage 5.00 cm away from the center of a 1-cm diameter metal sphere that has a \(-3.00 \mathrm{nC}\) static charge?

    Strategy

    As we have discussed in Electric Charge and Electric Field, charge on a metal sphere spreads out uniformly and produces a field like that of a point charge located at its center. Thus we can find the voltage using Equation \ref{eq1}.

    Solution

    Entering known values into the expression for the potential of a point charge, we obtain

    \[ \begin{align*} V&=k\dfrac{Q}{r} \\[5pt] &=(8.99 \times 10^{9} \, \mathrm{N}\cdot \mathrm{m^{2}/C^{2}}) \left(\dfrac{-3.00\times 10^{-9}\,\mathrm{C}}{5.00\times 10^{-2}\,\mathrm{m}}\right) \\[5pt] &= -539\, \mathrm{V}. \end{align*}\]

    Discussion

    The negative value for voltage means a positive charge would be attracted from a larger distance, since the potential is lower (more negative) than at larger distances. Conversely, a negative charge would be repelled, as expected.

    Example \(\PageIndex{2}\): What Is the Excess Charge on a Van de Graaff Generator

    A demonstration Van de Graaff generator has a 25.0 cm diameter metal sphere that produces a voltage of 100 kV near its surface. (Figure \(\PageIndex{1}\)) What excess charge resides on the sphere? (Assume that each numerical value here is shown with three significant figures.)

    19.3: Electrical Potential Due to a Point Charge (2)

    Strategy

    The potential on the surface will be the same as that of a point charge at the center of the sphere, 12.5 cm away. (The radius of the sphere is 12.5 cm.) We can thus determine the excess charge using Equation \ref{eq1}.

    Solution

    Solving for \(Q\) and entering known values gives

    \[ \begin{align*} Q &=\dfrac{rV}{k} \\[5pt] &= \dfrac{(0.125 \,\mathrm{m})(100\times 10^{3}\, \mathrm{V})}{8.99\times 10^{9}\, \mathrm{N\cdot m^{2}/C^{2}}} \\[5pt] &= 1.39\times 10^{-6} \,\mathrm{C} \\[5pt] &= 1.39\, \mathrm{\mu C}.\end{align*}\]

    Discussion

    This is a relatively small charge, but it produces a rather large voltage. We have another indication here that it is difficult to store isolated charges.

    The voltages in both of these examples could be measured with a meter that compares the measured potential with ground potential. Ground potential is often taken to be zero (instead of taking the potential at infinity to be zero). It is the potential difference between two points that is of importance, and very often there is a tacit assumption that some reference point, such as Earth or a very distant point, is at zero potential. This is analogous to taking sea level as \(h=0\) when considering gravitational potential energy, \(\mathrm{PE_{g}}=mgh\).

    Summary

    • Electric potential of a point charge is \(V=kQ/r\).
    • Electric potential is a scalar, and electric field is a vector. Addition of voltages as numbers gives the voltage due to a combination of point charges, whereas addition of individual fields as vectors gives the total electric field.
    19.3: Electrical Potential Due to a Point Charge (2024)
    Top Articles
    These Homemade Hamburger Buns are incredibly fast, easy and delicious!  In less than an hour, you can have soft and fluffy hamburger buns without going to the store.  Make this 40 minute hamburger bun recipe for your next cookout!
    Chocolate Ganache Recipe (VIDEO)
    The Tribes and Castes of the Central Provinces of India, Volume 3
    Dairy Queen Lobby Hours
    jazmen00 x & jazmen00 mega| Discover
    Weeminuche Smoke Signal
    Wizard Build Season 28
    How to know if a financial advisor is good?
    2024 Fantasy Baseball: Week 10 trade values chart and rest-of-season rankings for H2H and Rotisserie leagues
    360 Training Alcohol Final Exam Answers
    Dr Doe's Chemistry Quiz Answer Key
    Obituaries
    Lesson 1 Homework 5.5 Answer Key
    Lantana Blocc Compton Crips
    Sport Clip Hours
    Persona 4 Golden Taotie Fusion Calculator
    Where does insurance expense go in accounting?
    Becu Turbotax Discount Code
    I Touch and Day Spa II
    Swgoh Turn Meter Reduction Teams
    Odfl4Us Driver Login
    Libinick
    Beverage Lyons Funeral Home Obituaries
    Sodium azide 1% in aqueous solution
    Xfinity Cup Race Today
    Обзор Joxi: Что это такое? Отзывы, аналоги, сайт и инструкции | APS
    Lexus Credit Card Login
    Cardaras Funeral Homes
    Umn Biology
    Sam's Club Gas Price Hilliard
    Promatch Parts
    Housing Assistance Rental Assistance Program RAP
    Usf Football Wiki
    Streameast.xy2
    Bella Thorne Bikini Uncensored
    Insideaveritt/Myportal
    Daly City Building Division
    Ferguson Employee Pipeline
    Rhode Island High School Sports News & Headlines| Providence Journal
    “To be able to” and “to be allowed to” – Ersatzformen von “can” | sofatutor.com
    Mychart Mercy Health Paducah
    Iupui Course Search
    Copd Active Learning Template
    Greg Steube Height
    Streameast Io Soccer
    Canada Life Insurance Comparison Ivari Vs Sun Life
    Neil Young - Sugar Mountain (2008) - MusicMeter.nl
    Craigslist Anc Ak
    Erica Mena Net Worth Forbes
    Buildapc Deals
    Provincial Freeman (Toronto and Chatham, ON: Mary Ann Shadd Cary (October 9, 1823 – June 5, 1893)), November 3, 1855, p. 1
    Latest Posts
    Article information

    Author: Moshe Kshlerin

    Last Updated:

    Views: 5889

    Rating: 4.7 / 5 (57 voted)

    Reviews: 88% of readers found this page helpful

    Author information

    Name: Moshe Kshlerin

    Birthday: 1994-01-25

    Address: Suite 609 315 Lupita Unions, Ronnieburgh, MI 62697

    Phone: +2424755286529

    Job: District Education Designer

    Hobby: Yoga, Gunsmithing, Singing, 3D printing, Nordic skating, Soapmaking, Juggling

    Introduction: My name is Moshe Kshlerin, I am a gleaming, attractive, outstanding, pleasant, delightful, outstanding, famous person who loves writing and wants to share my knowledge and understanding with you.